Advanced Microeconomics

Math You Should Know: Preliminaries

Ying Zheng

School of Applied Economics, Renmin University of China

Fall 2024

- 2 Continuity and Compact Set
- 3 Concavity and Convexity
- 4 Homogeneous Functions and Euler's Formula

6 The Envelope Theorem

- 2 Continuity and Compact Set
- Concavity and Convexity
- Homogeneous Functions and Euler's Formula
- **Optimization Problem**
- 6 The Envelope Theorem

Notations

•
$$\mathbb{R}^d = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_d$$

• ×: Cartesian product

$$A\times B=\{(a,b)|a\in A \text{ and } b\in B\}$$

• ||x||: Euclidean norm

$$\|x\| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$$

• ||x - y||: Euclidean distance

$$||x - y|| = d(x, y) = \left(\sum_{i=1}^{d} (x_i - y_i)^2\right)^{1/2}$$

Notations

- $f: \mathbb{R}^d \to \mathbb{R}^m$
- $\nabla f(x)$: gradient vector

$$\nabla f(x) = (f_1(x), f_2(x), \dots, f_d(x)) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_d}\right)$$

• Df(x): the derivative of f at x

$$Df(x) = \begin{bmatrix} Df^{1}(x) \\ \vdots \\ Df^{m}(x) \end{bmatrix} = \begin{bmatrix} \nabla f^{1}(x) \\ \vdots \\ \nabla f^{m}(x) \end{bmatrix} \equiv \begin{bmatrix} \frac{\partial f^{1}(x)}{\partial x_{1}} & \dots & \frac{\partial f^{1}(x)}{\partial x_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^{m}(x)}{\partial x_{1}} & \dots & \frac{\partial f^{m}(x)}{\partial x_{d}} \end{bmatrix}$$

- wealth effect $D_w x(p, w)$
- price effect $D_p x(p, w)$

- Continuity and Compact Set
- Concavity and Convexity
- Interpretending and Homogeneous Functions and Euler's Formula
- **Optimization Problem**
- 6 The Envelope Theorem

Compact Set

Compact Set

A set $\mathcal{D} \in \mathbb{R}^d$ is called compact if every sequence in \mathcal{D} has a subsequence that converges to an element again contained in \mathcal{D} .

• (Bolzano-Weierstrass Theorem) A set $\mathcal{D} \in \mathbb{R}^d$ is compact if and only if it is closed and bounded.

Bounded Set

Bounded Set

A set $\mathcal{D} \in \mathbb{R}^d$ is bounded if there exists k > 0 such that ||x|| < k for each $x \in \mathcal{D}$.

Example

- $\mathcal{D} = [0, 2]$
- $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$

Closed Set

Closed Set

A set $\mathcal{D} \in \mathbb{R}^d$ is closed if its complement $\mathcal{D}^C = \mathbb{R}^d \setminus \mathcal{D}$ is open.

(Equivalent Definition) A set D ∈ R^d is closed if and only if for every sequence (x_n) ⊂ D which converges in R^d, the limit lim_{n→∞} = x must also lie in D.

Example

•
$$\mathcal{D} = [0,1]$$

•
$$\mathcal{D} = [0, 1]$$

Convergence

Convergence

A sequence (x_n) in \mathbb{R}^d is said to converge to a limit x (written $x_n \to x$) if for all $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that for all $n \ge N(\varepsilon)$, we have $d(x_n, x) < \varepsilon$.

Example

• Consider the sequence (x_n) , where $x_n = \frac{1}{n}, n = 1, 2, \dots$

Continuous Function

Continuous Function

A function $f : \mathcal{D} \to \mathcal{T}$ where $\mathcal{D} \subset \mathbb{R}^d$ and $\mathcal{T} \subset \mathbb{R}^m$ is continuous at $x \in \mathcal{D}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x \in \mathcal{D}$,

$$d(x,y) < \delta \quad \Longrightarrow \quad d(f(x),f(y)) < \varepsilon$$

• (Equivalent Definition) f is continuous at $x \in \mathcal{D}$ if for all (x_n) such that $x_n \in \mathcal{D}$ for each n and $x_n \to x$, we have $f(x_n) \to f(x)$.

$$\forall (x_n)_{n \in \mathbb{N}} \subset \mathcal{D} : \lim_{n \to \infty} x_n = x \implies \lim_{n \to \infty} f(x_n) = f(x)$$

f is continuous on \mathcal{D} if it is continuous at each $x \in \mathcal{D}$.

2 Continuity and Compact Set

Concavity and Convexity

Homogeneous Functions and Euler's Formula

Optimization Problem

6 The Envelope Theorem

Convex Set and Separating Hyperplane

Definition

A set $A \subset \mathbb{R}^n$ is convex if $\alpha x + (1 - \alpha)x' \in A$ whenever $x, x' \in A$ and $\alpha \in [0, 1]$.

Definition

Given $p \in \mathbb{R}^n$ with $p \neq 0$, and $c \in \mathbb{R}$. The hyperplane generated by p and c is the set $H_{p,c} = \{z \in \mathbb{R}^n : p \cdot z = c\}$. The sets $H_{p,c} = \{z \in \mathbb{R}^n : p \cdot z \ge c\}$ and $H_{p,c} = \{z \in \mathbb{R}^n : p \le z = c\}$ are called the half-space above and the half-space below $H_{p,c}$, respectively.

Advanced Microeconomics, Fall 2024

Separating Hyperplane and Supporting Hyperplane

Theorem

- (Separating Hyperplane Theorem) Assume that $B \subset \mathbb{R}^n$ is convex and closed, and that $x \notin B$. Then there is $p \in \mathbb{R}^n$ with $p \neq 0$, and a value $c \in \mathbb{R}$ such that $p \cdot x > c$ and $p \cdot y < c$ for every $y \in B$.
- (Supporting Hyperplane Theorem) Assume that B ⊂ ℝⁿ is convex, and that x is not an element of the interior of B. Then there is p ∈ ℝⁿ with p ≠ 0, such that p ⋅ x ≥ p ⋅ y for every y ∈ B.

Separating Hyperplane Theorem

Supporting Hyperplane Theorem

Advanced Microeconomics, Fall 2024

Concavity v.s Convexity

Let $\mathcal{D} \subset \mathbb{R}^n$ and $f : \mathcal{D} \to \mathbb{R}$. From now on we assume \mathcal{D} is convex.

Definition

A function $f: \mathcal{D} \to \mathbb{R}$ is concave if for any $x, y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

and convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Concavity v.s Convexity

Concavity v.s Convexity

Definition

A function $f : \mathcal{D} \to \mathbb{R}$ is strictly concave if for any $x \neq y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

$$f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$$

and strictly convex if

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

Theorem

- (negative of a function) $f : \mathcal{D} \to \mathbb{R}$ is (strictly) concave if and only if -f is (strictly) convex.
- (sum of functions) If f(x) and g(x) are both concave (convex) functions, then f(x) + g(x) is also a concave (conex) function.

Convex Set v.s Convex Function

- 1. In defining a convex function, we need a convex set for the domain.
- 2. If f(x) is a convex function, then for any constant k, it can give rise to a convex set $S^{\leq} \equiv \{x | f(x) \leq k\}$:

$$f(x)$$
 is convex $\implies S^{\leq}$ is convex

If f(x) is a concave function, then for any constant k, it can give rise to a convex set $S^{\geq} \equiv \{x | f(x) \geq k\}$

$$f(x)$$
 is concave $\implies S^{\geq}$ is convex

Quasi-concavity v.s. Quasi-convexity

Let $\mathcal{D} \subset \mathbb{R}^n$ and $f : \mathcal{D} \to \mathbb{R}$. From now on we assume \mathcal{D} is convex.

Definition

A function $f: \mathcal{D} \to \mathbb{R}$ is quasi-concave if for any $x, y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

 $f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}\$

and quasi-convex if

 $f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}\$

Quasi-concavity v.s. Quasi-convexity

Let $\mathcal{D} \subset \mathbb{R}^n$ and $f : \mathcal{D} \to \mathbb{R}$. From now on we assume \mathcal{D} is convex.

Definition

A function $f: \mathcal{D} \to \mathbb{R}$ is strictly quasi-concave if for any $x, y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

 $f(\lambda x + (1 - \lambda)y) > \min\{f(x), f(y)\}$

and strictly quasi-convex if

 $f(\lambda x + (1 - \lambda)y) < \max\{f(x), f(y)\}\$

Theorem

- (negative of a function) If f(x) is (strictly) quasi-concave, then -f(x) is (strictly) quasi-convex.
- (concavity v.s quasi-concavity) (strictly) concavity ⇒ (strictly) quasi-concavity; (strictly) convexity ⇒ (strictly) quasi-convexity.

Convex Set, Convex Function and Quasi-Convex Function

Theorem

- Convex Function \Longrightarrow Quasi-Convex Function $\iff S^{\leq} \equiv \{x | f(x) \leq k\}$ is convex.
- Concave Function \Longrightarrow Quasi-Concave Function $\iff S^{\geq} \equiv \{x | f(x) \geq k\}$ is convex.

- 2 Continuity and Compact Set
- 3 Concavity and Convexity

6 The Envelope Theorem

Homogeneous Degree

Definition

A function $f(x_1, \ldots, x_N)$ is homogeneous of degree r (for $r = \ldots, -1, 0, 1, \ldots$) if for every t > 0 we have

$$f(tx_1,\ldots,tx_N) = t^r f(x_1,\ldots,x_N)$$

Example

•
$$f(x_1, x_2) = x_1/x_2$$
 is HD0

•
$$f(x_1, x_2) = (x_1 x_2)^{1/2}$$
 is HD1.

Theorem

If $f(x_1, \ldots, x_N)$ is homogeneous of degree r (for $r = \ldots, -1, 0, 1, \ldots$), then for any $n = 1, \cdots, N$ the partial derivative function $\partial f(x_1, \ldots, x_N) / \partial x_n$ is homogeneous of degree r - 1.

Euler's Formula

Euler's Formula

If $f(x_1, \ldots, x_N)$ is homogeneous of degree r (for $r = \ldots, -1, 0, 1, \ldots$) and differentiable, then at any point we have

$$\sum_{n=1}^{N} \frac{\partial f(\bar{x}_1, \dots, \bar{x}_N)}{\partial x_n} \tilde{x}_n = rf(\bar{x}_1, \dots, \bar{x}_N)$$

Proof.

By definition we have

$$f(tx_1,\ldots,tx_N) = t^r f(x_1,\ldots,x_N)$$

Differentiating this equation w.r.t. t gives

$$\sum_{n=1}^{N} \frac{\partial f\left(t\bar{x}_{1},\ldots,t\bar{x}_{N}\right)}{\partial x_{n}} \bar{x}_{n} - rt^{r-1}f\left(\bar{x}_{1},\ldots,\bar{x}_{N}\right) = 0$$

Let t = 1 and we obtain the Euler's Rule.

Advanced Microeconomics, Fall 2024

- 2 Continuity and Compact Set
- 3 Concavity and Convexity
- 4 Homogeneous Functions and Euler's Formula

6 The Envelope Theorem

- Optimization means finding the maximum or minimum values of a quantity, and finding when these max/mins occurs.
- What quantities are optimized in economics?
 - maximize utility (UMP), profit (PMP) ...
 - ▶ minimize expenditure (EMP), cost (CMP) ...
- 1^{st} steps to solve an Optimization Problem
 - Identify the quantity to be optimized
 - Identify the feasible domain

Let $f : \mathbb{R}^d \to \mathbb{R}$ and $\mathcal{D} \subset \mathbb{R}^d$. A constrained optimization problem is

 $\max f(x)$ subject to $x \in \mathcal{D}$

- f is the objective function
- \mathcal{D} is the constraint set
- A solution to this problem $x \in \mathcal{D}$ is called a maximizer
- The set of maximizers is denoted

 $\operatorname{argmax}\{f(x)|x \in \mathcal{D}\}$

• Similarly for minimization problems

A Graphical Example

Existence of Solution

Let $f : \mathbb{R} \to \mathbb{R}$ and consider the following problems

- $\max f(x)$ s.t. $x \in [a, b]$
- $\max f(x)$ s.t. $x \in [c, b]$
- $\max f(x)$ s.t. $x \in (c, b)$

Existence of Solutions

Theorem (Weierstrass Theorem)

Let $\mathcal{D} \in \mathbb{R}^d$ be compact and $f : \mathcal{D} \to \mathbb{R}$ be a continuous function on \mathcal{D} . Then f attains a maximum and a minimum on \mathcal{D} .

- Compact Set
 - Bounded Set
 - Closed Set
 - ★ Convergence
- Continuous Function

A Simple Case

Let $f : \mathbb{R} \to \mathbb{R}$ and consider the problem $\max_{x \in [a,b]} f(x)$.

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ and suppose $a < x^* < b$ is a local maximum (minimum) of f on [a, b]. Then, $f'(x^*) = 0$.

• We call a point x^* such that $f'(x^*) = 0$ a critical point.

Recipe for solving the simple case

Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and consider the problem $\max_{x \in [a,b]} f(x)$. If the problem has a solution, then it can be found by the following method:

- 1. Find all critical points: i.e., $x^* \in [a, b]$ s.t. $f'(x^*) = 0$
- 2. Evaluate f at all critical points and at boundaries a and b
- 3. The one that gives the highest f is the solution
- Note that if f'(a) > 0 (or f'(b) < 0), then the solution cannot be at a (or b)

Recipe for general problems

Generalizes to $f : \mathbb{R}^d \to \mathbb{R}$ and the problem is

 $\max f(x)$ subject to $x \in \mathcal{D}$

- 1. Find critical points $x^* \in \mathcal{D}$ such that $Df(x^*) = 0$
- 2. Evaluate f at the critical points and the boundaries of \mathcal{D}
- 3. Choose the one that give the highest f
- Important to remember that solution must exist for this method to work
- In more complicated problems evaluating f at the boundaries could be difficult
- For such cases we have the method of the Lagrangean (for equality constraints) and Kuhn-Tucker conditions (for inequality constraints)

Equality Constraints: Lagrangean Method

Let $f : \mathbb{R}^d \to \mathbb{R}$ and $g_j : \mathbb{R}^d \to \mathbb{R}$ for each j = 1, ..., k be \mathcal{C}^1 and consider the problem

 $\max f(x)$ s.t. $g_j(x) = 0, \qquad j = 1, ..., k$

1. Form the Lagrangean (λ_j s are called Lagrangean multipliers)

$$L(x,\lambda) = f(x) + \sum_{j=1}^{k} \lambda_j g_j(x)$$

2. Find critical points of $L(x, \lambda)$

$$\frac{\partial L}{\partial x_i}(x,\lambda) = 0, \qquad i = 1, \dots, d$$
$$\frac{\partial L}{\partial \lambda_j}(x,\lambda) = 0, \qquad j = 1, \dots, k$$

3. Evaluate f at each critical point x, choose the one that gives the highest value

An Interpretation of the Lagrange Multiplier

Consider the problem

 $\max f(x) \quad \text{s.t. } g(x) = c$

We can write the Lagrangian function as

$$L(x,\lambda) = f(x) + \lambda[c - g(x)].$$

For stationary values of $L(x, \lambda)$, regarded as a function of x and λ , the FOC is

$$L_{\lambda} = c - g(x) = 0$$

$$L_{x} = \nabla f(x)^{T} - \lambda \nabla g(x)^{T} = 0,$$

from which we can find the critical values $x^*(c)$ and $\lambda^*(c)$.

An Interpretation of the Lagrange Multiplier

Then we have the equilibrium identities

$$c - g(x^*) \equiv 0;$$
 $\nabla f(x^*)^T - \lambda \nabla g(x^*)^T \equiv 0$

Now since the optimal value of $L(x, \lambda)$ depends on λ^* and x^* , that is

$$L^{*} = f(x^{*}) + \lambda^{*}[c - g(x^{*})].$$

Differentiating L^* totally with respect to c, we find

$$\begin{aligned} \frac{dL^*}{dc} &= \nabla f(x^*) \cdot \nabla x^*(c)^T + [c - g(x^*)] \frac{d\lambda^*}{dc} + \lambda^* \left[1 - \nabla g(x^*) \cdot \nabla x^*(c)^T \right] \\ &= \left[\nabla f(x^*) - \lambda^* \nabla g(x^*) \right] \cdot \nabla x^*(c)^T + [c - g(x^*)] \frac{d\lambda^*}{dc} + \lambda^* \\ &= \lambda^* \end{aligned}$$

Thus λ^* measures the sensitivity of Z^* to changes in the constraint.

Inequality Constraints: Kuhn-Tucker Method

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g_j : \mathbb{R}^n \to \mathbb{R}$ for each $j = 1, \dots, k$ be \mathcal{C}^1 and consider the problem

 $\max f(x)$ s.t. $g_j(x) \le 0, \quad j = 1, ..., k$

1. Form the Lagrangean (λ_j s are called Lagrange multipliers)

$$L(x,\lambda) = f(x) + \sum_{j=1}^{k} \lambda_j g_j(x)$$

2. Applying Kuhn-Tucker (necessary) conditions to derive x^*

$$x_i \frac{\partial L}{\partial x_i} = 0, \quad i = 1, \dots, d$$

 $\frac{\partial L}{\partial \lambda_j} \ge 0 \quad \lambda_j \ge 0 \text{ and } \lambda_j \frac{\partial L}{\partial \lambda_j} = 0, \quad j = 1, \dots, k$

Interpretation of the K-T Conditions

$\partial L/\partial \lambda \geq 0$ $\lambda \geq 0$ and $\lambda(\partial L/\partial \lambda) = 0$

• $\partial L/\partial \lambda^* = 0$ and $\lambda^* > 0$

If the shadow price of wealth is positive in the optimal solution ($\lambda^* > 0$), then it is fully expended ($\partial L/\partial \lambda^* = 0$)

• $\partial L/\partial \lambda^* > 0$ and $\lambda^* = 0$

If the consumer's wealth is not fully expended in the optimal solution $(\partial L/\partial \lambda^* > 0)$, the shadow price of wealth must be set equal to zero ($\lambda^* = 0$).

Kuhn-Tucker Sufficiency

Kuhn-Tucker Sufficiency

Suppose f is concave and each g_j is convex. If x satisfies the K-T conditions, then x is a global solution to the constrained optimization problem.

We can weaken the conditions in the above theorem when there is only one constraint. Let $\mathcal{D} = \{x \in \mathbb{R}^n : g(x) \leq d\}$.

Kuhn-Tucker Sufficiency (for one constraint)

Suppose f is quasi-concave and g is convex. If x satisfies the K-T, then x is a global solution to the constrained optimization problem.

Uniqueness

Uniqueness

Suppose f is strictly quasi-concave and g is convex. If x satisfies the K-T, then x is the only global solution to the constrained optimization problem.

Proof.

We can prove this proposition by contradiction.

Assume x satisfies the K-T but is not the only solution to the problem, which means there exists $x' \neq x$ satisfying f(x') = f(x) and $g(x') \leq d$.

Consider $x^* = \lambda x + (1 - \lambda)x'$ where $\lambda \in (0, 1)$.

f is strictly quasi-concave $\Rightarrow f(x^*) > f(x)$

$$g \text{ is convex} \Rightarrow g(x^*) \leq \lambda g(x) + (1 - \lambda)g(x') \leq d \Rightarrow x^* \in \mathcal{D}$$

It is contradictory to the fact that x is a global solution.

- 2 Continuity and Compact Set
- 3 Concavity and Convexity
- Homogeneous Functions and Euler's Formula

6 The Envelope Theorem

The Envelope Theorem

Consider the problem we discussed before

 $\max f(x) \quad \text{s.t. } g(x) = c$

We denote the **value function** by $v(\cdot)$, which means v(q) is the maximum value attained by $f(\cdot)$ when the parameter vector is q. The envelop theorem addresses the marginal effects of change in q on the value v(q).

The Envelope Theorem

Consider the simplest case: one variable, one parameter, and no constraints. By the chain rule, we have

$$rac{dv(ar q)}{dq} = rac{\partial f(x(ar q);ar q)}{\partial q} + rac{\partial f(x(ar q);ar q)}{\partial x} rac{dx(ar q)}{dq}$$

According to the first-order conditions, we know $\frac{\partial f(x(\bar{q});\bar{q})}{\partial x} = 0$. Thus, the above equation simplifies to

$$\frac{dv(\bar{q})}{dq} = \frac{\partial f(x(\bar{q});\bar{q})}{\partial q}$$

Notice the only effect is the direct effect. Then we apply the conclusion to general cases.

The Envelope Theorem

Consider the value function v(q) for the problem at last page. Assume that it is differentiable at $\bar{q} \in \mathbb{R}^d$ and that $(\lambda_1, \ldots, \lambda_M)$ are values of Lagrange multipliers associated with the maximizer solution $x(\bar{q})$ at \bar{q} . Then,

$$\frac{\partial v(\bar{q})}{\partial q_s} = \frac{\partial f(x(\bar{q});\bar{q})}{\partial q_s} - \sum_{m=1}^M \lambda_m \frac{\partial g_m(x(\bar{q});\bar{q})}{\partial q_s} \quad \text{for } s = 1, \dots, S$$