Advanced Microeconomics

Math You Should Know: Preliminaries

Ying Zheng

School of Applied Economics, Renmin University of China

Fall 2024

- 2 [Continuity and Compact Set](#page-5-0)
- [Concavity and Convexity](#page-11-0)
- 4 [Homogeneous Functions and Euler's Formula](#page-21-0)

[The Envelope Theorem](#page-40-0)

- ² [Continuity and Compact Set](#page-5-0)
- ³ [Concavity and Convexity](#page-11-0)
- ⁴ [Homogeneous Functions and Euler's Formula](#page-21-0)
- **[Optimization Problem](#page-24-0)**
- [The Envelope Theorem](#page-40-0)

Notations

$$
\bullet \ \mathbb{R}^d = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_d
$$

 $\bullet \times$: Cartesian product

$$
A \times B = \{(a, b) | a \in A \text{ and } b \in B\}
$$

∥x∥: Euclidean norm

$$
||x|| = \left(\sum_{i=1}^{d} x_i^2\right)^{1/2}
$$

 \circ $||x - y||$: Euclidean distance

$$
||x - y|| = d(x, y) = \left(\sum_{i=1}^{d} (x_i - y_i)^2\right)^{1/2}
$$

Notations

- $f:\mathbb{R}^d\to\mathbb{R}^m$
- $\bullet \nabla f(x)$: gradient vector

$$
\nabla f(x) = (f_1(x), f_2(x), \dots, f_d(x)) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_d}\right)
$$

• $Df(x)$: the derivative of f at x

$$
Df(x) = \begin{bmatrix} Df^1(x) \\ \vdots \\ Df^m(x) \end{bmatrix} = \begin{bmatrix} \nabla f^1(x) \\ \vdots \\ \nabla f^m(x) \end{bmatrix} \equiv \begin{bmatrix} \frac{\partial f^1(x)}{\partial x_1} & \cdots & \frac{\partial f^1(x)}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m(x)}{\partial x_1} & \cdots & \frac{\partial f^m(x)}{\partial x_d} \end{bmatrix}
$$

- \blacktriangleright wealth effect $D_wx(p, w)$
- \blacktriangleright price effect $D_p x(p, w)$

- [Continuity and Compact Set](#page-5-0)
- [Concavity and Convexity](#page-11-0)
- [Homogeneous Functions and Euler's Formula](#page-21-0)
- [Optimization Problem](#page-24-0)
- [The Envelope Theorem](#page-40-0)

Compact Set

Compact Set

A set $D \in \mathbb{R}^d$ is called compact if every sequence in D has a subsequence that converges to an element again contained in D.

(Bolzano-Weierstrass Theorem) A set $D \in \mathbb{R}^d$ is compact if and only if it is closed and bounded.

Bounded Set

Bounded Set

A set $\mathcal{D} \in \mathbb{R}^d$ is bounded if there exists $k > 0$ such that $||x|| < k$ for each $x \in \mathcal{D}$.

Example

$$
\bullet \ \mathcal{D} = [0,2]
$$

$$
\bullet \ \mathcal{D} = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}
$$

Closed Set

Closed Set

A set $\mathcal{D} \in \mathbb{R}^d$ is closed if its complement $\mathcal{D}^C = \mathbb{R}^d \setminus \mathcal{D}$ is open.

(**Equivalent Definition**) A set $\mathcal{D} \in \mathbb{R}^d$ is closed if and only if for every sequence $(x_n) \subset \mathcal{D}$ which converges in \mathbb{R}^d , the limit $\lim_{n\to\infty} = x$ must also lie in \mathcal{D} .

Example

\n- $$
\mathcal{D} = [0, 1]
$$
\n- $\mathcal{D} = [0, 1)$
\n

Convergence

Convergence

A sequence (x_n) in \mathbb{R}^d is said to converge to a limit x (written $x_n \to x$) if for all $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that for all $n \ge N(\varepsilon)$, we have $d(x_n, x) < \varepsilon$.

Example

Consider the sequence (x_n) , where $x_n = \frac{1}{n}, n = 1, 2, \dots$

Continuous Function

Continuous Function

A function $f: \mathcal{D} \to \mathcal{T}$ where $\mathcal{D} \subset \mathbb{R}^d$ and $\mathcal{T} \subset \mathbb{R}^m$ is continuous at $x \in \mathcal{D}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x \in \mathcal{D}$,

$$
d(x, y) < \delta \quad \Longrightarrow \quad d(f(x), f(y)) < \varepsilon
$$

• (Equivalent Definition) f is continuous at $x \in \mathcal{D}$ if for all (x_n) such that $x_n \in \mathcal{D}$ for each n and $x_n \to x$, we have $f(x_n) \to f(x)$.

$$
\forall (x_n)_{n \in \mathbb{N}} \subset \mathcal{D} : \lim_{n \to \infty} x_n = x \implies \lim_{n \to \infty} f(x_n) = f(x)
$$

f is continuous on D if it is continuous at each $x \in \mathcal{D}$.

[Continuity and Compact Set](#page-5-0)

[Concavity and Convexity](#page-11-0)

[Homogeneous Functions and Euler's Formula](#page-21-0)

[Optimization Problem](#page-24-0)

[The Envelope Theorem](#page-40-0)

Convex Set and Separating Hyperplane

Definition

A set $A \subset \mathbb{R}^n$ is convex if $\alpha x + (1 - \alpha)x' \in A$ whenever $x, x' \in A$ and $\alpha \in [0, 1]$.

Definition

Given $p \in \mathbb{R}^n$ with $p \neq 0$, and $c \in \mathbb{R}$. The **hyperplane** generated by p and c is the set $H_{p,c} = \{z \in \mathbb{R}^n : p \cdot z = c\}$. The sets $H_{p,c} = \{z \in \mathbb{R}^n : p \cdot z \ge c\}$ and $H_{p,c} = \{z \in \mathbb{R}^n : p \le z = c\}$ are called the half-space above and the half-space below H_{nc} , respectively.

Renmin University of China **Advanced Microeconomics**. Fall 2024 © Ying Zheng 13/43

Separating Hyperplane and Supporting Hyperplane

Theorem

- (Separating Hyperplane Theorem) Assume that $B \subset \mathbb{R}^n$ is convex and closed, and that $x \notin B$. Then there is $p \in \mathbb{R}^n$ with $p \neq 0$, and a value $c \in \mathbb{R}$ such that $p \cdot x > c$ and $p \cdot y < c$ for every $y \in B$.
- (Supporting Hyperplane Theorem) Assume that $B \subset \mathbb{R}^n$ is convex, and that x is not an element of the interior of *B*. Then there is $p \in \mathbb{R}^n$ with $p \neq 0$, such that $p \cdot x \geq p \cdot y$ for every $y \in B$.

Separating Hyperplane Theorem

Supporting Hyperplane Theorem

Renmin University of China 14/43 and 2021 [Advanced Microeconomics, Fall 2024](#page-0-0) © Ying Zheng 14/43

Concavity v.s Convexity

Let $\mathcal{D} \subset \mathbb{R}^n$ and $f : \mathcal{D} \to \mathbb{R}$. From now on we assume \mathcal{D} is convex.

Definition

A function $f : \mathcal{D} \to \mathbb{R}$ is concave if for any $x, y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

$$
f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)
$$

and convex if

$$
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
$$

Concavity v.s Convexity

Concavity v.s Convexity

Definition

A function $f : \mathcal{D} \to \mathbb{R}$ is strictly concave if for any $x \neq y \in \mathcal{D}$ and $\lambda \in (0,1)$, it is the case that

$$
f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)
$$

and strictly convex if

$$
f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)
$$

Theorem

- (negative of a function)f : $\mathcal{D} \to \mathbb{R}$ is (strictly) concave if and only if $-f$ is (strictly) convex.
- (sum of functions) If $f(x)$ and $g(x)$ are both concave (convex) functions, then $f(x) + g(x)$ is also a concave \bullet (conex) function.

Convex Set v.s Convex Function

- 1. In defining a convex function, we need a convex set for the domain.
- 2. If $f(x)$ is a convex function, then for any constant k, it can give rise to a convex set $S^{\leq} \equiv \{x | f(x) \leq k\}$:

$$
f(x)
$$
 is convex $\implies S^{\le}$ is convex

If $f(x)$ is a concave function, then for any constant k, it can give rise to a convex set $S^{\geq} \equiv \{x | f(x) \geq k\}$

$$
f(x)
$$
 is concave $\implies S^{\ge}$ is convex

Quasi-concavity v.s. Quasi-convexity

Let $\mathcal{D} \subset \mathbb{R}^n$ and $f : \mathcal{D} \to \mathbb{R}$. From now on we assume \mathcal{D} is convex.

Definition

A function $f: \mathcal{D} \to \mathbb{R}$ is quasi-concave if for any $x, y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

 $f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}\$

and quasi-convex if

 $f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}\$

Quasi-concavity v.s. Quasi-convexity

Let $\mathcal{D} \subset \mathbb{R}^n$ and $f : \mathcal{D} \to \mathbb{R}$. From now on we assume \mathcal{D} is convex.

Definition

A function $f: \mathcal{D} \to \mathbb{R}$ is strictly quasi-concave if for any $x, y \in \mathcal{D}$ and $\lambda \in (0, 1)$, it is the case that

 $f(\lambda x + (1 - \lambda) y) > \min\{f(x), f(y)\}\$

and strictly quasi-convex if

$$
f(\lambda x + (1 - \lambda)y) < \max\{f(x), f(y)\}
$$

Theorem

- (negative of a function) If $f(x)$ is (strictly) quasi-concave, then $-f(x)$ is (strictly) quasi-convex.
- (concavity v.s quasi-concavity) (strictly) concavity \Rightarrow (strictly) quasi-concavity; (strictly) convexity \Rightarrow (strictly) quasi-convexity.

Convex Set, Convex Function and Quasi-Convex Function

Theorem

- Convex Function \Longrightarrow Quasi-Convex Function $\Longleftrightarrow S^{\leq} \equiv \{x | f(x) \leq k\}$ is convex.
- Concave Function \Longrightarrow Quasi-Concave Function $\Longleftrightarrow S^{\geq} \equiv \{x | f(x) \geq k\}$ is convex.

- 2 [Continuity and Compact Set](#page-5-0)
- **[Concavity and Convexity](#page-11-0)**

[The Envelope Theorem](#page-40-0)

Homogeneous Degree

Definition

A function $f(x_1, \ldots, x_N)$ is **homogeneous of degree** r (for $r = \ldots, -1, 0, 1, \ldots$) if for every $t > 0$ we have

$$
f(tx_1,\ldots,tx_N)=t^rf(x_1,\ldots,x_N)
$$

Example

•
$$
f(x_1, x_2) = x_1/x_2
$$
 is HDO.

•
$$
f(x_1, x_2) = (x_1 x_2)^{1/2}
$$
 is HD1.

Theorem

If $f(x_1, \ldots, x_N)$ is homogeneous of degree r (for $r = \ldots, -1, 0, 1, \ldots$), then for any $n = 1, \cdots, N$ the partial derivative function $\partial f(x_1, \ldots, x_N)/\partial x_n$ is homogeneous of degree $r - 1$.

Euler's Formula

Euler's Formula

If $f(x_1, \ldots, x_N)$ is homogeneous of degree r (for $r = \ldots, -1, 0, 1, \ldots$) and differentiable, then at any point we have

$$
\sum_{n=1}^{N} \frac{\partial f(\bar{x}_1,\ldots,\bar{x}_N)}{\partial x_n} \tilde{x}_n = rf(\bar{x}_1,\ldots,\bar{x}_N)
$$

Proof.

By definition we have

$$
f(tx_1,\ldots,tx_N)=t^r f(x_1,\ldots,x_N)
$$

Differentiating this equation w.r.t. t gives

$$
\sum_{n=1}^{N} \frac{\partial f(t\bar{x}_1,\ldots,t\bar{x}_N)}{\partial x_n} \bar{x}_n - r t^{r-1} f(\bar{x}_1,\ldots,\bar{x}_N) = 0
$$

Let $t = 1$ and we obtain the Euler's Rule.

Renmin University of China 24/43 and 2014 [Advanced Microeconomics, Fall 2024](#page-0-0) © Ying Zheng 24/43

 \Box

- 2 [Continuity and Compact Set](#page-5-0)
- 3 [Concavity and Convexity](#page-11-0)
- 4 [Homogeneous Functions and Euler's Formula](#page-21-0)

[The Envelope Theorem](#page-40-0)

- Optimization means finding the maximum or minimum values of a quantity, and finding when these max/mins occurs.
- What quantities are optimized in economics?
	- \blacktriangleright maximize utility (UMP), profit (PMP) ...
	- \blacktriangleright minimize expenditure (EMP), cost (CMP) ...
- 1^{st} steps to solve an Optimization Problem
	- \blacktriangleright Identify the quantity to be optimized
	- \blacktriangleright Identify the feasible domain

Let $f : \mathbb{R}^d \to \mathbb{R}$ and $\mathcal{D} \subset \mathbb{R}^d$. A constrained optimization problem is

max $f(x)$ subject to $x \in \mathcal{D}$

- \bullet f is the objective function
- \bullet D is the constraint set
- A solution to this problem $x \in \mathcal{D}$ is called a maximizer
- \bullet The set of maximizers is denoted

 $argmax{f(x)|x \in \mathcal{D}}$

• Similarly for minimization problems

A Graphical Example

Existence of Solution

Let $f : \mathbb{R} \to \mathbb{R}$ and consider the following problems

- max $f(x)$ s.t. $x \in [a, b]$
- \bullet max $f(x)$ s.t. $x \in [c, b]$
- \bullet max $f(x)$ s.t. $x \in (c, b)$

Existence of Solutions

Theorem (Weierstrass Theorem)

Let $D \in \mathbb{R}^d$ be compact and $f: D \to \mathbb{R}$ be a continuous function on D. Then f attains a maximum and a minimum on \mathcal{D} .

- Compact Set
	- ▶ Bounded Set
	- ▶ Closed Set
		- \star Convergence
- Continuous Function \bullet

A Simple Case

Let $f : \mathbb{R} \to \mathbb{R}$ and consider the problem $\max_{x \in [a, b]} f(x)$.

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ and suppose $a < x^* < b$ is a local maximum (minimum) of f on [a, b]. Then, $f'(x^*) = 0$.

We call a point x^* such that $f'(x^*) = 0$ a critical point.

Recipe for solving the simple case

Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and consider the problem $\max_{x \in [a,b]} f(x)$. If the problem has a solution, then it can be found by the following method:

- 1. Find all critical points: i.e., $x^* \in [a, b]$ s.t. $f'(x^*) = 0$
- 2. Evaluate f at all critical points and at boundaries a and b
- 3. The one that gives the highest f is the solution
- Note that if $f'(a) > 0$ (or $f'(b) < 0$), then the solution cannot be at a (or b)

Recipe for general problems

Generalizes to $f : \mathbb{R}^d \to \mathbb{R}$ and the problem is

max $f(x)$ subject to $x \in \mathcal{D}$

- 1. Find critical points $x^* \in \mathcal{D}$ such that $Df(x^*) = 0$
- Evaluate f at the critical points and the boundaries of D
- 3. Choose the one that give the highest f
- Important to remember that solution must exist for this method to work
- \bullet In more complicated problems evaluating f at the boundaries could be difficult
- For such cases we have the method of the Lagrangean (for equality constraints) and Kuhn-Tucker conditions (for inequality constraints)

Equality Constraints: Lagrangean Method

Let $f: \mathbb{R}^d \to \mathbb{R}$ and $g_j: \mathbb{R}^d \to \mathbb{R}$ for each $j = 1, \dots, k$ be \mathcal{C}^1 and consider the problem max $f(x)$ s.t. $g_i(x) = 0$, $j = 1, ..., k$

1. Form the Lagrangean (λ_i s are called Lagrangean multipliers)

$$
L(x,\lambda) = f(x) + \sum_{j=1}^{k} \lambda_j g_j(x)
$$

2. Find critical points of $L(x, \lambda)$

$$
\frac{\partial L}{\partial x_i}(x,\lambda) = 0, \qquad i = 1,\dots, d
$$

$$
\frac{\partial L}{\partial \lambda_j}(x,\lambda) = 0, \qquad j = 1,\dots, k
$$

3. Evaluate f at each critical point x , choose the one that gives the highest value

An Interpretation of the Lagrange Multiplier

Consider the problem

max $f(x)$ s.t. $g(x) = c$

We can write the Lagrangian function as

 $L(x, \lambda) = f(x) + \lambda[c - q(x)].$

For stationary values of $L(x, \lambda)$, regarded as a function of x and λ , the FOC is

$$
L_{\lambda} = c - g(x) = 0
$$

$$
L_x = \nabla f(x)^T - \lambda \nabla g(x)^T = 0,
$$

from which we can find the critical values $x^*(c)$ and $\lambda^*(c)$.

An Interpretation of the Lagrange Multiplier

Then we have the equilibrium identities

$$
c - g(x^*) \equiv 0; \qquad \nabla f(x^*)^T - \lambda \nabla g(x^*)^T \equiv 0
$$

Now since the optimal value of $L(x, \lambda)$ depends on λ^* and x^* , that is

$$
L^* = f(x^*) + \lambda^* [c - g(x^*)].
$$

Differentiating L^* totally with respect to c , we find

$$
\frac{dL^*}{dc} = \nabla f(x^*) \cdot \nabla x^*(c)^T + [c - g(x^*)] \frac{d\lambda^*}{dc} + \lambda^* \left[1 - \nabla g(x^*) \cdot \nabla x^*(c)^T \right]
$$

$$
= [\nabla f(x^*) - \lambda^* \nabla g(x^*)] \cdot \nabla x^*(c)^T + [c - g(x^*)] \frac{d\lambda^*}{dc} + \lambda^*
$$

$$
= \lambda^*
$$

Thus λ^* measures the sensitivity of Z^* to changes in the constraint.

Inequality Constraints: Kuhn-Tucker Method

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g_j : \mathbb{R}^n \to \mathbb{R}$ for each $j = 1, \ldots, k$ be \mathcal{C}^1 and consider the problem

max $f(x)$ s.t. $q_i(x) \leq 0, \quad i = 1, ..., k$

1. Form the Lagrangean (λ_i s are called Lagrange multipliers)

$$
L(x,\lambda) = f(x) + \sum_{j=1}^{k} \lambda_j g_j(x)
$$

2. Applying Kuhn-Tucker (necessary) conditions to derive x^*

$$
x_i \frac{\partial L}{\partial x_i} = 0, \quad i = 1, ..., d
$$

$$
\frac{\partial L}{\partial \lambda_j} \ge 0 \quad \lambda_j \ge 0 \quad \text{and} \quad \lambda_j \frac{\partial L}{\partial \lambda_j} = 0, \quad j = 1, ..., k
$$

Interpretation of the K-T Conditions

$\partial L/\partial \lambda > 0$ $\lambda > 0$ and $\lambda(\partial L/\partial \lambda) = 0$

 $\partial L/\partial \lambda^* = 0$ and $\lambda^* > 0$

If the shadow price of wealth is positive in the optimal solution ($\lambda^* > 0$), then it is fully expended ($\partial L/\partial \lambda^* = 0$)

$\partial L/\partial \lambda^* > 0$ and $\lambda^* = 0$

If the consumer's wealth is not fully expended in the optimal solution ($\partial L/\partial \lambda^* > 0$), the shadow price of wealth must be set equal to zero ($\lambda^* = 0$).

Kuhn-Tucker Sufficiency

Kuhn-Tucker Sufficiency

Suppose f is concave and each q_i is convex. If x satisfies the K-T conditions, then x is a global solution to the constrained optimization problem.

We can weaken the conditions in the above theorem when there is only one constraint. Let $\mathcal{D} = \{x \in \mathbb{R}^n : g(x) \le d\}.$

Kuhn-Tucker Sufficiency (for one constraint)

Suppose f is quasi-concave and q is convex. If x satisfies the K-T, then x is a global solution to the constrained optimization problem.

Uniqueness

Uniqueness

Suppose f is strictly quasi-concave and q is convex. If x satisfies the K-T, then x is the only global solution to the constrained optimization problem.

Proof.

We can prove this proposition by contradiction.

Assume x satisfies the K-T but is not the only solution to the problem, which means there exists $x' \neq x$ satisfying $f(x') = f(x)$ and $g(x') \leq d$.

Consider $x^* = \lambda x + (1 - \lambda)x'$ where $\lambda \in (0, 1)$.

f is strictly quasi-concave \Rightarrow $f(x^*) > f(x)$

g is convex $\Rightarrow g(x^*) \leq \lambda g(x) + (1 - \lambda)g(x') \leq d \Rightarrow x^* \in \mathcal{D}$

It is contradictory to the fact that x is a global solution.

⊏

- [Continuity and Compact Set](#page-5-0)
- [Concavity and Convexity](#page-11-0)
- [Homogeneous Functions and Euler's Formula](#page-21-0)

[The Envelope Theorem](#page-40-0)

The Envelope Theorem

Consider the problem we discussed before

max $f(x)$ s.t. $q(x) = c$

We denote the **value function** by $v(\cdot)$, which means $v(q)$ is the maximum value attained by $f(\cdot)$ when the parameter vector is q. The envelop theorem addresses the marginal effects of change in q on the value $v(q)$.

The Envelope Theorem

Consider the simplest case: one variable, one parameter, and no constraints. By the chain rule, we have

$$
\frac{dv(\bar{q})}{dq} = \frac{\partial f(x(\bar{q}); \bar{q})}{\partial q} + \frac{\partial f(x(\bar{q}); \bar{q})}{\partial x} \frac{dx(\bar{q})}{dq}
$$

According to the first-order conditions, we know $\frac{\partial f(x(\bar{q});\bar{q})}{\partial x} = 0$. Thus, the above equation simplifies to

$$
\frac{dv(\bar{q})}{dq} = \frac{\partial f(x(\bar{q}); \bar{q})}{\partial q}
$$

Notice the only effect is the direct effect. Then we apply the conclusion to general cases.

The Envelope Theorem

Consider the value function $v(q)$ for the problem at last page. Assume that it is differentiable at $\bar{q} \in \mathbb{R}^d$ and that $(\lambda_1, \ldots, \lambda_M)$ are values of Lagrange multipliers associated with the maximizer solution $x(\bar{q})$ at \bar{q} . Then,

$$
\frac{\partial v(\bar{q})}{\partial q_s} = \frac{\partial f(x(\bar{q}); \bar{q})}{\partial q_s} - \sum_{m=1}^M \lambda_m \frac{\partial g_m(x(\bar{q}); \bar{q})}{\partial q_s} \quad \text{ for } s = 1, \dots, S
$$